Skip to main content

Awni00's group workspace

Pre-training Task (reshuffled objects); Abstractor

What makes this group special?
Tags

pretraining_mode=pretraining

Notes
Author
State
Finished
Start time
May 27th, 2023 2:00:11 AM
Runtime
47s
Tracked hours
41s
Run path
abstractor/object_argsort_autoregressive/vj41paca
OS
Linux-4.18.0-425.13.1.el8_7.x86_64-x86_64-with-glibc2.28
Python version
3.10.8
Git repository
git clone https://github.com/jdlafferty/relational
Git state
git checkout -b "pretraining_mode=pretraining" b98437cbc7c2f1a78bfd13943d733bfd7fea87c5
Command
/diskarray/home/awni/projects/relational/experiments/object_argsort_autoregressive/evaluate_argsort_model_learning_curves.py --model abstractor --pretraining_mode pretraining --init_trainable True --pretraining_task_type "reshuffled objects" --pretraining_task_data_path object_sorting_datasets/product_structure_reshuffled_object_sort_dataset.npy --eval_task_data_path object_sorting_datasets/product_structure_object_sort_dataset.npy --n_epochs 500 --early_stopping True --min_train_size 100 --max_train_size 3000 --train_size_step 100 --num_trials 10 --start_trial 0 --pretraining_train_size 1000 --wandb_project_name object_argsort_autoregressive
System Hardware
CPU count20
Logical CPU count 20
GPU count1
GPU typeNVIDIA GeForce RTX 4090
W&B CLI Version
0.15.3
Config

Config parameters are your model's inputs. Learn more

  • {} 3 keys
    • "Pre-training Task (reshuffled objects); Abstractor"
    • "pretraining"
    • 1,000
Summary

Summary metrics are your model's outputs. Learn more

  • {} 10 keys
    • "table-file"
    • 0.99732
    • 499
    • 0.0010000000474974513
    • 0.06894054263830185
    • 0.977299988269806
    • 0.009467425756156445
    • 0.9987999796867372
    • 0.98795
    • 0.9987149834632874
Artifact Inputs

This run consumed these artifacts as inputs. Learn more

Artifact Outputs

This run produced these artifacts as outputs. Total: 2. Learn more